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1 Text pre-processing technique

1.1 Stop words removal

1 def remove stop words(row):
2 # tokenize the sentence
3 tokens = word tokenize(row)
4 # remove stop words
5 tokens = [w for w in tokens if not w in nltk.corpus.stopwords.words(’english’)]
6 # join the tokens
7 tokens = ’ ’.join(tokens)
8 # update the dataframe
9 return tokens

10
11 # multiple−threads processing
12 track parallel progress(remove stop words, df[’review’].to list(), nproc=10)

Figure 1: Python code for Stop Wrods Removal

Stop words represent frequently occurring words in a language that lack substantial
semantic or pragmatic meaning. Consequently, they are often considered dispensable in
natural language processing tasks such as sentiment analysis [9]. Examples of stop words
in English include ”a”, ”an”, ”the”, ”in”, ”on”, ”is”, ”and”, and ”of”.

Eliminating stop words from text offers numerous benefits, including noise reduction,
improved efficiency, enhanced accuracy of analysis, and decreased memory and compu-
tational resource consumption. This process involves identifying stop words within the
text and subsequently removing them. In this study, we employed the pre-defined English
stop words set available through the Natural Language Toolkit (NLTK), as illustrated in
Code Block 1 on line 5. The results of this process are presented in the accompanying
notebook, where we observed a significant reduction in token count from an initial size of
900 to 580 within a single text record.

We executed the stop words removal operation on a Pandas data frame, primarily
using a CPU device. To optimize efficiency, we introduced a parallel execution mechanism
(Code Block 1 on line 12) that leverages multiple threads within contemporary computing
systems. We set the number of threads utilized to 10, resulting in a linear acceleration
effect. Specifically, parallelization accelerated processing time by approximately 10 times
for the current setting.

1.2 Stemming

Stemming is a technique employed in natural language processing to reduce a word
to its root form or stem [5]. The aim of stemming is to simplify text data analysis by
reducing inflected or derived words to a shared base form. For instance, the words ”run”,
”running”, and ”runner” can all be stemmed to the root form ”run”.

Incorporating stemming in natural language processing tasks offers several advantages.
It can minimize vocabulary size, consequently decreasing memory and computational re-
source requirements for analysis. Additionally, stemming can enhance analysis accuracy
by reducing the number of unique words to be considered. Furthermore, stemming proves
helpful in information retrieval tasks, as it allows searches for documents containing vari-
ations of a word to yield identical results.

In this study, we employed the Porter stemming algorithm available through the Natu-
ral Language Toolkit (NLTK) to stem words in the text, as demonstrated in Code Block 2
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line 5. The results of this process are presented in the accompanying notebook, where we
observed a notable reduction in token count, as inflected or derived words were condensed
to their common base forms.

1 def stemming(row):
2 # tokenize the sentence
3 tokens = word tokenize(row)
4 # stemming
5 tokens = [nltk.stem.PorterStemmer().stem(w) for w in tokens]
6 # join the tokens
7 tokens = ’ ’.join(tokens)
8 # update the dataframe
9 return tokens

10
11 # multiple−threads processing
12 track parallel progress(remove stop words, df[’review’].to list(), nproc=10)

Figure 2: Python code for Stemming

1.3 Byte Pair Encoding (BPE)

Byte Pair Encoding (BPE) [2] is a subword-based tokenizer used in natural language
processing (NLP) to compress data by substituting the most frequently occurring pair of
consecutive bytes of data with a byte that does not appear in the data. BPE is a prevalent
data compression algorithm in NLP for constructing language models, including GPT-2
[10], RoBERTa [8], XLM [6], and FlauBERT [7]. The primary goal of BPE is to represent
the corpus with the fewest number of tokens possible by decomposing infrequent words into
two or more subword tokens while representing the most common words in the vocabulary
as single tokens.

The BPE algorithm begins with a pre-tokenized corpus, and each word is divided into
characters, including a special end token that signifies a word boundary. The algorithm
then identifies the most frequently occurring byte pair and combines them into a new
token. This process continues until the token limit size or iteration limit is reached.

We implemented the BPE algorithm by following the Hugging Face Tutorial [3, 4],
which involves the subsequent steps. Code samples for the implementation can be found
in the advanced notebook. In this section, we selected the first two text entries in the
dataset data frame as a sample. To reduce computational overhead, we employed a subset
for exploration purposes. The full version can be accessed by invoking a predefined BPE
algorithm for batch preprocessing, as outlined in section 3.

• Define a BPE Tokenizer for pre-tokenization. In this case, we employed GPT-2.

• Calculate the frequency of each word and the base vocabulary formed by all char-
acters used in the corpus.

• Compute the frequency of each pair and define a new function capable of merging
split pairs.

• To tokenize new text, pre-tokenize it, split it, and apply all the learned merge rules.
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2 Nave Bayes Classifier & evaluation

2.1 Training

The Nave Bayes Classifier [11] is a supervised learning algorithm employed for clas-
sification tasks. This parameterized classifier necessitates the estimation of two types
of parameters: word likelihood and category likelihood. Word likelihood represents the
probability of observing a specific word given a category, whereas category likelihood
indicates the probability of observing a category in the training data.

To estimate these parameters, we utilize a training set comprising labeled examples.
For each category, we count the occurrence frequency of each word and the total number of
words within that category. This information enables us to calculate the word likelihood
for each word in each category using the following formula:

P (wk | c) =
count (wk, c)!
w count(w, c)

(1)

In this equation, count (wk, c) denotes the number of times word wk appears in category
c, while

!
w count(w, c) represents the total number of words in category c.

Category likelihood is the probability of observing a category in the training data. We
estimate this by counting the number of documents in each category and dividing it by
the total number of documents:

P (c) =
Nc

Ndoc

(2)

Here, Nc refers to the number of documents in category c, and Ndoc signifies the total
number of documents in the training set.

After estimating these parameters, we can utilize them to classify new, unlabeled
examples. We compute the likelihood of each category given the observed words in the
example using Bayes’ theorem and select the category with the highest likelihood as the
predicted category.

1 def train(self, X train, y train):
2 # Calculate the count of each class and each word in each class
3 self. build class table(y train)
4 for x, y in tqdm(zip(X train, y train)):
5 # Increment the count of the current class
6 self.class counts[y] += 1
7 for word in x.split():
8 if word not in self.class word counts[y]:
9 # Initialize the count of the current word in the current class

10 self.class word counts[y][word] = 0
11 # Increment the count of the current word in the current class
12 self.class word counts[y][word] += 1
13 # Add the current word to the vocabulary
14 self.vocabulary.add(word)

Figure 3: Python code for Naive Bayes Classifier Training

As depicted in Code Block 3, the training process of the Naive Bayes Classifier (NBC)
begins by feeding the training data, denoted by X train and y train, to the train

method. Then, a class counting table is constructed by enumerating the unique categories.
In the present dataset, the class counting table is of size 2, as the dataset comprises only
positive and negative categories.
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Subsequently, each document and its corresponding label are iterated over, and a
bag of words representation is constructed while counting the frequency of each word. To
optimize efficiency, upon encountering a new word, there are two possible scenarios: either
the word exists in the categorical counting table, in which case its corresponding counter
is incremented by one, or the word is absent from the table, and we initialize its counter
to zero. Finally, we append the word to the vocabulary using the self.vocabulary

attribute.
In the training stage, we do not calculate the probability and likelihood of the full

dataset to reduce computational overhead. Because that test set sample might not exist
in the training set.

2.2 Prediction

Upon accumulating the necessary word count frequencies and the number of categories
in a cache, the prediction can be executed based on the following calculations: Formally,
designate the class variable as y, and let the dependent feature vector comprise x1, . . . , xn.
Bayes’ theorem articulates the subsequent relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)
(3)

The naive conditional independence assumption posits that

P (xi | y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi | y) (4)

for all i. This simplifies the relationship to:

P (y | x1, . . . , xn) =
P (y)

"n
i=1 P (xi | y)

P (x1, . . . , xn)
(5)

As P (x1, . . . , xn) remains constant given the input, the classification rule becomes:

P (y | x1, . . . , xn) ∝ P (y)
"n

i=1 P (xi | y)
⇓

ŷ = argmaxy P (y)
"n

i=1 P (xi | y) ,
(6)

To estimate P (y) and P (xi | y), Maximum A Posteriori (MAP) estimation is employed.
The former is derived from the relative frequency of class y in the training set.

In Code Block 4, the Naive Bayes classifier prediction process is illustrated. At Line
11, we compute the prior probability P (y) as the ratio of the number of samples in a
specific category to the total samples in the dataset. Additionally, we applied to add
one smoothing to avoid zero probability which one word P (wk | c) = 0. In Line 17, we
calculate the conditional probability P (xi | y), considering the frequency of words in the
test instance, and accumulate the product of these probabilities. Lastly, in Line 6, we
perform the argmaxy operation to determine the most probable category for the given
test instance.

The code implementation adheres to the foundational concepts of the Naive Bayes
classifier, capitalizing on its probabilistic nature to generate predictions.
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1 def predict(self, X test):
2 # Calculate the probability of each class for each test instance
3 predictions = []
4 for x in X test:
5 scores = [self.calculate score(x, c) for c in self.classes]
6 best class = list(self.classes)[np.argmax(scores)]
7 predictions.append(best class)
8 return predictions
9 def calculate score(self, x, c):

10 # Calculate the score of a test instance for a given class
11 score = self.class counts[c] / sum(self.class counts.values())
12 for word in x.split():
13 if word in self.class word counts[c]:
14 count = self.class word counts[c][word]
15 else:
16 count = 0
17 score ∗= (count + 1) / (self.class counts[c] + len(self.vocabulary))
18 return np.log(score) if score > 0 else 0 # avoid underflow

Figure 4: Python code for Naive Bayes Classifier Prediction

2.3 Evaluation

2.3.1 Evaluation Metrics

The performance of a classification model can be assessed using various evaluation metrics,
including accuracy, precision, recall, and F1 score. These metrics are defined as follows:

1. Accuracy: The proportion of correctly classified instances out of the total instances.

accuracy(y, ŷ) =
1

nsamples

nsamples −1#

i=0

1 (ŷi = yi) (7)

2. Precision: The proportion of true positive instances among those predicted as pos-
itive.

Rrecision =
tp

tp+ fp
(8)

3. Recall (Sensitivity): The proportion of true positive instances among the actual
positive instances.

Recall =
tp

tp+ fn
(9)

4. F1 Score: The harmonic mean of precision and recall, used as a balanced measure
of both metrics.

F1 Score = 2 · Precision · Recall
Precision + Recall

(10)

2.3.2 Performance Comparison

Accuracy Precision Recall F1 Score

w/o preprocessing 0.6189 0.7061 0.6189 0.5738
w preprocessing 0.7206 0.7531 0.7206 0.7113

Table 1: Performance Comparison Between w/o Preprocessing and w Preprocessing.
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(a) w/o Preprocessing (b) w Preprocessing

Figure 5: T-SNE Visualization Comparison for input text features space, we select 1000
samples per category for T-SNE analysis.

Table 1 illustrates a comparative analysis of a text classification model’s performance
with and without preprocessing. The preprocessing procedure encompasses the removal
of stop words and the application of stemming to textual input. As a result, employing
preprocessing techniques, such as stop word elimination and stemming, yields a substantial
enhancement in the text classification model’s performance across all evaluation metrics,
including accuracy, precision, recall, and F1 score.

Figure 9 demonstrates that, in the absence of preprocessing, text features are more
dispersed, potentially increasing the complexity for the classifier. However, by implement-
ing stemming and removing stop words, the text features coalesce, even in the absence
of distinct boundaries. Consequently, the classifier exhibits improved performance within
this feature space.

3 Impact factor Investigation for classifier

3.1 Pre-trained GPT-2 BPE Tokenizer

The use of Byte Pair Encoding (BPE) as a tokenizer has been implemented in GPT-2,
a language model developed by Radford et al. [10]. BPE is widely acknowledged as a
practical solution for language modeling as it provides a middle ground between character
and word-level approaches, effectively interpolating between frequent symbol sequences
at the word level and infrequent symbol sequences at the character level.

In order to evaluate the efficacy of this approach, we conducted experiments with
a pre-trained GPT-2 tokenizer in conjunction with basic pre-processing. The results in
table 2 demonstrate that this enhancement led to an increase in classifier performance,
with accuracy rising from 72.06% to 74.56%, and f1 score metrics improving from 71.13%
to 74.13%.
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Methods Accuracy Precision Recall F1 Score

Baseline 0.7206 0.7531 0.7206 0.7113
Pre-trained BPE 0.7456 0.7630 0.7456 0.7413
Fine-tune BPE 0.7672 0.7758 0.7672 0.7654
K-Smoothing(k=0.1) 0.7879 0.7919 0.7879 0.7872
Optimized NBC(k=4.2) 0.8203 0.8217 0.8203 0.8201

BERT Base [1] 0.9210 - - -
DistillBERT Base [12] 0.9405 - - -
Roberta Base [8] 0.9468 - - -

Table 2: Performance comparison for different enhancement techniques, The baseline
methodology adopted in this research corresponds to the basic tokenization approach
outlined in Section 2.3. The GPT-2 pre-trained tokenizer was utilized for the pre-trained
byte pair encoding technique. To ensure a fair comparison, the BERT, DistillBert, and
Roberta models were trained under the same hyperparameters and for two epochs.

3.2 Fine-tuned BPE Tokenizer

While the GPT-2 tokenizer is pre-trained on a large dataset, there may still be sig-
nificant domain gaps between the production dataset and the database used in this as-
signment. Therefore, we fine-tuned another BPE tokenizer to evaluate its performance.
By training the BPE tokenizer with a few iterations on the target dataset, we obtained
promising results. Table 2 shows that after fine-tuning the BPE tokenizer on the target
dataset, the accuracy increased from 74.56% to 76.72%, and f1 score metrics improved
from 74.13% to 76.54% compared to the pre-trained BPE method.

3.3 K-Smoothing

Figure 6: F1 score,accuracy vs k

k f1 score accuracy

0.1 0.787186 0.78792
0.6 0.774712 0.77608
1.1 0.763631 0.7656
1.6 0.75413 0.75672
2.1 0.748019 0.75128

Figure 7: F1 score and accuracy for K-
Smoothing.

P (wi) =
count (wi) + k

N + V k
(11)
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K-smoothing, also known as Laplace smoothing or add-k smoothing, is a technique
used to improve the performance of the Naive Bayes classifier. As shown in the equation
above, that add k to the words frequency and multiple k to the amount of vocabularies
has following benefits :

1. Handling zero probabilities : by additional a non-zero positive k, we can avoid the
problem that word in test set not existing in the training set which resulting 0
probability.

2. Regularization: By adding a small constant k to the feature-class counts, K-smoothing
reduces the impact of rare feature-class combinations, making the model more ro-
bust and less likely to overfit.

3. Smoothing effect : By adding a k value redistributing probabilities across feature-
class combinations. In another hand, when assign k to unseen words, K-smoothing
helps create a more balanced distribution of probabilities, improving the overall
performance of the Naive Bayes classifier.

As illustrated in Figure 6 and Table 7, the performance of the Naive Bayes classifier
is optimal when the smallest value of k is employed. It is observed that the classifier’s
performance deteriorates as the value of k increases. A plausible explanation for this
phenomenon may be attributed to the intrinsic property of the Naive Bayes classifier,
where probabilities of feature values conditional on a class are multiplied to compute the
joint probability for the respective class. Nevertheless, multiplying numerous probabilities
can potentially lead to numerical challenges, particularly when confronted with minuscule
probability values. The cumulative product of several small probabilities can become
exceedingly small, thus resulting in underflow errors or imprecisions in floating-point
arithmetic.

3.4 Optimized Naive Beyes Classifer

1 class OptimizedKSmoothingNaiveBayesClassifier(KSmoothingNaiveBayesClassifier):
2 def init (self, k=1):
3 super(). init ()
4 self.k = k
5
6 def calculate score(self, x, c):
7 # Calculate the score of a test instance for a given class
8 score = np.log(self.class counts[c])
9 for word in x.split():

10 if word in self.class word counts[c]:
11 count = self.class word counts[c][word]
12 else:
13 count = 0
14 score += np.log(count + self.k) / (self.class counts[c] + self.k ∗ len(self.vocabulary)

)
15 return score

Figure 8: Python code for multinomial naive Bayes classifier

We address the numerical issues observed in section 3.3, we use log space and addition
instead of multiplication. The logarithm function has the property that:

log(a ∗ b) = log(a) + log(b) (12)
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Using this property, we can convert the multiplication of probabilities into the addition
of logarithms of probabilities:

log (P (f1 | C) ∗ P (f2 | C) ∗ · · · ∗ P (fn | C)) =

log (P (f1 | C)) + log (P (f2 | C)) + · · ·+ log (P (fn | C))
(13)

where fi represents the feature values and C represents the class.
based on the above preliminary, we have introduce an Optimized NBC also termed
Multinomial naive Bayes. Given that original naive Bayes as following :

p (x | Ck) =
(
!n

i=1 xi)!"n
i=1 xi!

n$

i=1

pxi
ki where pki := p (xi | Ck) (14)

The multinomial naive Bayes classifier becomes a linear classifier when expressed in
log-space:

log p (Ck | x) ∝ log

%
p (Ck)

n$

i=1

pkixi

&

= log p (Ck) +
n#

i=1

xi · log pki

(15)

In the Code Block 8 Line 14, we implemented the equation 15 for optimized NBC.
After the optimized NBC, the performance raised in a large margin that from 78.79%
accuracy to 82.03% accuracy and also improved across all metrics.3.

(a) k in range of 0.1-5.1 (b) k in range of 10-100

Figure 9: K-Smoothing analysis with different K values.

Upon examining the aforementioned figure, it has been determined that the optimal
value for k is 4.1, within the range of 0.1 to 5.1. The performance exhibits a declining trend
when k > 5.1. In the right figure, it can be observed that the performance consistently
deteriorates within the range of 10 to 100. The potential issues contributing to this
phenomenon are as follows:

1. Increased bias : As the value of k escalates, probability estimates tend to become
more uniform, subsequently introducing a greater degree of bias into the model.
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Consequently, the classifier’s ability to accurately represent the true data distribu-
tion may be compromised.

2. Attenuation of informative features : A larger value of k results in the dilution of
observed frequencies, thereby diminishing the significance of informative features in
the classifier’s decision-making process.

3. Decreased sensitivity to rare events : With an augmented k value, the influence of
rare events on the overall probability estimates is relatively diminished. As Naive
Bayes classifiers typically rely on such events to make accurate classifications, per-
formance may suffer as a result.

4. Over-smoothing : The adoption of a larger k value can induce over-smoothing of the
data, thereby inhibiting the classifier’s ability to discern important patterns and
nuances. This occurrence may adversely impact the classifier’s performance.

3.5 Deep Learning Enhanced Classifier

Table 2 presents a comparison of the performance of traditional machine learning (ML)
methods and deep learning (DL) methods, specifically BERT Base, DistillBERT Base, and
Roberta Base, on an unspecified NLP task. The table reveals that the DL-based models
considerably outperform the traditional ML-based models in terms of accuracy.

BERT [1], introduced by Google in 2018, is a transformer-based DL model pre-trained
on a large corpus of text data and fine-tuned for a specific NLP task. It employs a
bidirectional approach to consider both the left and right context of a word in order to
understand its meaning. DistillBERT [12], introduced by Hugging Face in 2019, is a
compressed version of BERT that leverages knowledge distillation to improve efficiency.
Roberta [8], another transformer-based model introduced by Facebook AI in 2019, em-
ploys an enhanced training approach that allows learning from additional unlabeled data
compared to BERT, leading to better performance.

The highest accuracy achieved by the ML-based models was 82.03% using an opti-
mized NBC model, while BERT Base reached an accuracy of 92.10%, DistillBERT Base
attained an accuracy of 94.05%, and Roberta Base achieved an accuracy of 94.68%. This
demonstrates that DL-based models offer a significant improvement over traditional ML-
based methods.

However, it is important to note that the fine-tuning process for these pre-trained
transformer models entails a high computational cost. For example, our experiments
used one node composed of 4× NVIDIA A100 GPUs to fine-tune these models. We set
a global batch size of 256, and the fine-tuning process took approximately 5 minutes per
epoch, consuming 144 GB VRAM.

In conclusion, DL-based models such as BERT Base, DistillBERT Base, and Roberta
Base have shown superior performance to traditional ML-based methods in various NLP
tasks. These models represent a significant advancement in the field of NLP and continue
to push the boundaries of state-of-the-art performance.
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[7] Hang Le, Löıc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecou-
teux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, and Didier Schwab.
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